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CHAPTER 1. INTRODUCTORY MATERIAL
Analytical chemistry is that branch of chemistry that is concerned with determining the composition

of materials. This involves both identifying what compounds are present in a sample (qualitative analysis)
and specifying the quantity of each compound in the sample (quantitative analysis). It is traditional that
introductory analytical texts emphasize quantitative analysis. This text, which will follow tradition,
presents an introduction to the theory and practice of quantitative chemical analysis, both classical and
simple instrumental analysis. Some introductory material on statistics and stoichiometry will be presented
first. However, before beginning with this it should be noted that quadratic equations will be encountered
quite often in this material and that the use of calculators is highly recommended for problem solving.
There is a short section on each of these topics in Appendix A, which you should read and understand
before attempting the problems included with each chapter.

1.1 STATISTICAL TREATMENT OF DATA
The final result of a quantitative chemical analysis is almost always one or more numbers which

indicate the concentrations of the compounds in the sample. There is always some uncertainty associated
with each operation or measurement in an analysis and thus there is always some uncertainty in the
final result. Knowing the uncertainty is as important as knowing the final result. Having data that are so
uncertain as to be useless is no better than having no data at all. Thus there is a need to describe and
reduce, if necessary and possible, this uncertainty. Statistics is of great help in this regard. To start, two
terms, which are often used incorrectly, are defined.

Accuracy - the closeness of the experimental result to the actual value (the correct answer).

Precision - the reproducibility of a data set; a measure of the ability to obtain the same number
(not necessarily the correct number) in every trial.

Precision and accuracy are not necessarily related, as described below. However, it is normal to
place more “faith” in the results of an analyst who has good precision, since good precision usually
means greater attention to detail.

1.1.1 TYPES OF ERRORS
Good accuracy should be the object of all chemical measurements. The question thus arises, how

is accuracy measured? This topic is best introduced by discussing errors, since a measurement will be
accurate if there are no errors. There are three general types of errors:

1) Blunders - these are mistakes that are obvious to the analyst and that are unlikely to be repeated
when another analysis is performed.

An example of a blunder is spilling a sample on the laboratory bench.

2) Determinate errors - these errors, often referred to as “bias”, are also mistakes, but are much
less obvious to the analyst and are quite likely to be repeated when other analyses are performed.
In theory many determinate errors, if recognized, could be eliminated by improving technique.

An example of a determinate error would be the use of an analytical balance that has gone out of
calibration to weigh a sample. If the balance weighs low (the sample is heavier than the balance indicates)
the analytical result will always be high. Thus determinate errors are unidirectional - they always produce
an error in the same direction.



1-2

3) Indeterminate errors - these errors, often referred to as “random errors”, are caused by the
need to make estimates in the last figure of a measurement, by noise present in instruments, etc.
Such errors can be reduced, but never entirely eliminated.

An example of indeterminate error is the
variation in the values taken from a buret due to the
need to estimate the last significant figure. The
observer would certainly say, referring to Figure 1-
1, that the volume delivered is between 40.2 and 40.3
mL. However, one can and should do better than
this. Some observers might say that the volume was
40.24, some 40.25, and others 40.26 mL. This
uncertainty in the last place is an example of
indeterminate error. It is better to report the volume
as 40.26 mL rather than to report its being between
40.2 and 40.3 mL, even though it is realized that the 0.06 is an intelligent estimate. Indeterminate errors
are bidirectional, being random in nature they are as likely to produce a high result as a low result.

Note that determinate error may also be involved in estimating the last figure of a measurement.
In the case being discussed parallax error (looking at the meniscus at an angle) and number bias (selecting
some numerals, e.g. 0 or 5, more often than others in the estimate) are two examples of determinate
error.

Since determinate errors are usually unidirectional, they will always cause an error in the final
result, even if many measurements are averaged. Indeterminate errors, being bidirectional, will tend to
cancel if enough measurements are averaged. These ideas are perhaps best illustrated by a figure.

In Case I shown in Figure 1-2, the precision is poor, but the accuracy will be good if enough data
are taken and averaged, since the errors are approximately equally distributed about the correct answer.
In Case II the precision is good and the accuracy is also good. In Case III the precision is good, but the
accuracy is poor due to a determinate error. Cases I and II illustrate the advantage of good precision. In
both cases an accurate answer will be obtained if enough data are taken and averaged. However, it is
not always possible to take a large number of data. If it is only possible to take a small number of data,
say three, the average of such a small set of data with good precision (Case II) will give a better result
than a similar average of a set with poor precision (Case I). The following summary can be given:

If there are no errors, the answer will be accurate (this is almost never the case).
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If there are no determinate errors and if a large number of measurements are made and the average
calculated, the average will be accurate.

If determinate error is present, there is usually no way to obtain the correct answer (statistics is no
help).

With regard to the second statement above, how large is large? The answer is usually thirty or
more. This number of measurements is almost never made in practice. However, it is still much better
to make more than one measurement and take the average, even if it is only an estimate of the correct
answer, than it is to rely on a single value. In most analytical procedures it is customary to make two or
three separate measurements, except when first establishing a procedure, in which case more
measurements are made.

With regard to the third statement above, since statistics is of no help when determinate errors are
made, how does one know if such errors are present? The usual procedure is to analyze a standard (a
sample of accurately known composition) and compare the analytical results with the known sample
composition. If the values are the same, bias is assumed to be absent. Many organizations, e.g. the
National Research Council of Canada and the National Institute of Standards and Technology in the
U.S.A., provide such standards. Another procedure is to analyze the sample using two different and
independent methods of analysis. If the two methods produce the same results, bias is again assumed to
be absent. Unfortunately, these and other methods all have flaws and it is impossible to be absolutely
certain whether determinate error really exists. In other words it is impossible to know with absolute
certainty the correct answer.

1.1.2 STATISTICAL PARAMETERS.
In statistics we usually distinguish between parameters that pertain to a population and parameters

that are obtained from a finite data set. A population would result if a very large number of measurements
(strictly an infinite number) were made. A finite data set results when just a few measurements are
made and is what we usually work with. A finite data set is a subset of the population. The parameters
calculated from a finite data set, usually represented by “English” characters, are only estimates of the
population parameters, usually represented by Greek characters. It is the population parameters that
one would like to obtain, if possible. Much of statistics is involved with trying to make inferences about
the population parameters from the data set parameters.

Since there is always uncertainty involved in all measurements, as discussed above, a data
population or a data set will consist of a distribution of values rather than a single value. Such distributions
have characteristics that are described by statistical parameters. The first such characteristic to be
investigated is the “central tendency” of a distribution. Many distributions have some values that are
more often observed than other values and these are usually toward the centre of the distribution. Three
methods of defining the “central tendency” are listed below.

The mean
The mean or average is calculated by summing all the values, x

i
, in the set and dividing by the

number of trials, N.

(1-1a)Mean = = =
+ + +

m x
x x x

N
N1 2 L
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or (1-1b)

As N→∞, m→µ, where µ is the population mean. In the absence of determinate error, µ is the
correct answer, and as N becomes larger the estimate, m, of the correct answer gets better.

The median
The median is the “central point” in a data set. Half of all the values in a set will lie above the

median, half will lie below the median. If the set contains an odd number of data points, the median will
be the central point of that set. If the set contains an even number of points, the median will be the
average of the two central points.

The mode
The mode is the value that occurs most often (the value with the highest probability). The mode

is quite often not obvious in a finite data set where no two values are the same.

In populations where errors are evenly distributed about the mean (the distribution is symmetrical),
the mean, the  median, and the mode will all have the same value. In this text, the mean will be the most
useful parameter for indicating the “central tendency” of a data set or population.

Accuracy and how one attempts to achieve and measure it have been discussed. The topic of
precision comes next. How does one measure precision? Obviously one must have made more than one
measurement to get an estimate of precision. The characteristic of a distribution that relates to precision
is the variability. In data distributions that arise from physical measurements the variability is a direct
measure of the precision of the measurement. The parameters used to describe the variability are listed
below.

The standard deviation
The standard deviation (and those parameters related to it) is the only statistically acceptable

measure of precision and is the only measure to be discussed in detail here. It is calculated from the
mean and the values of the trails in the data set according to:

(1-2)

The values of (x
i
-m) are the deviations from the mean and D.F. stands for the degrees of freedom.

The degrees of freedom are usually one less than the number of data in the set, (N-1). The reason for
this is that one degree of freedom is lost when calculating the mean of the data set. In a data set of ten,
for example, the tenth datum can be calculated from the other nine and the mean, indicating that there
are only nine independent data left after the mean has been calculated. Thus

(1-3)

As with the mean, as N→∞, s→σ, where σ is the population standard deviation. s is only an estimate of
σ, but as N gets larger, that estimate gets better.

m

x

N
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The relative standard deviation
Often the relative standard deviation is more useful in a practical sense than the absolute standard

deviation (given above), since it immediately provides an idea of the precision of the data set relative to
its individual values. There are several ways of expressing the relative standard deviation:

(1-4)

(1-5)

(1-6)

The relative standard deviation in percent is often referred to as the coefficient of variation. Note
that the absolute standard deviation has the same units as the mean, whereas the relative standard
deviation has no units. In some analytical determinations the relative standard deviation is reported in
parts per thousand (ppt).

The variance.
The variance is another method of describing variability and is often preferred by statisticians

because variances are directly additive (as will be seen later). The variance is simply the square of the
standard deviation.

(1-7)

The range
The range or spread is simply the difference between the largest and smallest values in a data set.

1.1.3 THE NORMAL DISTRIBUTION
Many different data distributions are found in nature. However, it is believed that a large number

of data types, including many types of chemical measurements whose variations are due to random
errors, follow a Gaussian distribution. This is a symmetrical, bell-shaped distribution. Since so many
data types follow this distribution it is usually referred to as the normal distribution and the mathematical
equation, Eqn. (1-8), that describes this distribution is called the normal error curve.

(1-8)

 In this equation f(x) is the frequency distribution function or the probability density function, x
represents the trial values, µ is the population mean, and σ is the population standard deviation. The
frequency distribution function gives the relative frequency at which any value of x will be observed.
The relative frequency is a function of the standard deviation and the position of x with respect to the
mean. A graph of the normal distribution is shown in Figure 1-3. In this figure the mean is taken as zero
and the standard deviation as unity. This is the standard representation of the normal error curve.

The ability to describe the normal distribution mathematically using Eqn. (1-8) is very useful.
From Figure 1-3 it is obvious that the mean of a normally distributed data population is the value that

Rel.  std.  dev.= =s
s

mr

Rel.  std.  dev in % = × =
×

s
s

mr 100
100

Rel.  std.  dev.  in ppt = × =
×

s
s

mr 1000
1000

Variance = =v s2

f x
x

( ) exp
( )

=
− −


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
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
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occurs most often (has the highest
frequency). Since the distribution is
symmetrical, the mean, the median,
and the mode will all be the same. It is
less obvious that inflection points
occur at µ±σ. The area under the curve
between x

1
 and x

2
, as determined by

integration, gives the probability that
any trial value, x, will be found
between x

1
 and x

2
. The area between

+∞ and -∞ is 1.0000, as it should be,
since the probability of finding any
value of x in this range must be unity.
The area between µ and µ+σ is 0.3413,
which means that 34.13% of all x
values in a normally distributed
population fall between the mean and
the mean plus one standard deviation.
Since the distribution is symmetrical,
34.13% of all values will fall between
the mean and the mean minus one standard deviation. Thus 68.26% of all values of x will fall within
±1σ of µ. Likewise it can be shown that 95.44% of all values of x will fall within ±2σ of µ and 99.74%
will fall within ±3σ of µ. Thus, in a normally distributed population it will be very unlikely (the chances
are less than 3 in 1000) that any value of x will be outside the ±3σ limits.

1.1.4 THE CONFIDENCE INTERVAL
One would often like to know how close the mean of a data set is likely to be to the correct answer

(the population mean), assuming that there is no determinate error. Imagine not just one data set mean,
but a set of means each calculated using N datum points taken at random from the population of data.
This set of means would have its own mean, µ

m
, and standard deviation, σ

m
. Now µ

m
 = µ (the population

mean) and σ
m 

< σ (the population standard deviation), and in fact it can be shown that σ
m
 = σ/N1/2.

Assuming that the data populations are normally distributed (usually a good assumption), the
characteristics of the standard deviation allow it to be used to estimate how close a given value is likely
to be to the mean. For example, any datum in the set will be within ±1σ of µ 68.3% of the time, within
±2σ of µ 95.5% of the time, and within ±3σ of µ 99.7% of the time (see above). If one knew the
population standard deviation, σ, one could calculate the standard deviation of the set of means, σ

m
.

This could then be used to estimate how close the calculated mean, m, of the data set was to the mean
of the means, µ

m
, which is also the population mean, µ. For example one would state that

m is within ±kσ
m
 of µ with z% confidence, or

m is within ±kσ/N1/2 of µ with z% confidence

If k equals 2, then z equals 95.5. Obviously as the confidence, z, increases, k must also increase.
A problem exists, however, since one normally does not know the population standard deviation,

σ. Instead one only knows s, the estimated population standard deviation, as calculated from the data
set, Eqn(1-3). Recall that s→σ only as N→∞. Statisticians have developed a method to “correct” for
not knowing σ. Instead of using k in the equation above, they use t, called “student’s t”, where t > k,
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t→k as N→∞, and the value of t will depend both on N (actually N-1, the degrees of freedom) and the
desired confidence. Values of t are given in tables, one such table being found in Appendix B. Thus the
final result is:

m is within ±ts/N1/2 of µ with z% confidence, or

(1-9)

An example will illustrate the above points.

Assume that the following values were obtained in the analysis of the weight of iron in 2.0000 g portions of
a sample: 0.3791, 0.3784, 0.3793, 0.3779, and 0.3797 g.

xi (g) (xi-m)2 (g2)
0.3791 (0.3791-0.37888)2 = 4.84x10-8

0.3784 (0.3784-0.37888)2 = 2.30x10-7

0.3793 (0.3793-0.37888)2 = 1.76x10-7

0.3779 (0.3779-0.37888)2 = 9.60x10-7

0.3797 (0.3797-0.37888)2 = 6.72x10-7

Σxi     = 1.8944 2.09x10-6 =     Σ(xi-m)2

The mean = m = 1.8944g/5 = 0.37888 g

The degrees of freedom = DF = (N-1) = 4

The standard deviation = s = {(2.09x10-6g2)/4}1/2 = 0.00072 g

The variance = s2 = (2.09x10-6g2)/4 = 5.2x10-7 g2

Rel. std. dev = sr = 0.00072g/0.37888g = 0.0019

Rel. std. dev. in % = 0.0019(100) = 0.19%

Rel. std. dev. in ppt = 0.0019(1000) = 1.9 ppt

To easily see the range and median it is convenient to order the data in terms of increasing or decreasing
values. This results in: 0.3779, 0.3784, 0.3791, 0.3793, and 0.3797 g. Since this data set has an odd
number of trails, the median is simply the middle or 3rd datum, 0.3791 g. Note that for a finite data set the
median and mean are not necessarily identical. The range is 0.3797-0.3779 g or 0.0018 g.

From the table of t values in Appendix B, the value of t for 4 degrees of freedom and 80% confidence is
1.533, while that for 95% confidence is 2.776. Thus ts/N1/2 for 80% confidence is (1.533)(0.00072)/2.24 or
0.00050. The 80% confidence interval is 0.3789±0.0005 g. The 95% confidence interval can likewise be
shown to be 0.3789±0.0009 g. Thus the population mean (and hopefully the correct answer) will lie between
0.3784 g and 0.3794 g 80% of the time and between 0.3780 g and 0.3798 g 95% of the time.

C.I.   with % confidence= ±m
ts

N
z
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One could report the answer in one of several ways:

0.3789g ±0.0007g, using the absolute standard deviation
0.3789g with a rel. std. dev. of 0.0019
0.3789g ±0.19%
0.3789g ±1.9ppt

Note that the standard deviation is listed above, not the confidence interval. If one wishes to report the
confidence interval, then it must be directly labeled as the confidence interval. It is normally assumed that
the number following a “±” will be the standard deviation. It is tempting to report the answer as 0.37888g
±0.00072g, but this should not be done for two reasons: (1) the rules for significant figures do not allow this
(it is assumed that you are familiar with these rules) and (2) the answer itself demonstrates how reporting
should be done. The standard deviation indicates that there is an uncertainty of 7 in the fourth place after
the decimal point. Thus it makes no sense to list any figures past this point.

1.1.5 STATISTICAL TESTS.
There are many statistical tests which are useful for chemists. These will not be mentioned with

one exception. Sometimes a value in a data set appears so far from the rest of the values that one
suspects that that value (called an outlier) must have been the result of some unknown large error not
present in any of the other trials. It would be very useful if some test were available to determine
whether the outlier could be rejected on statistical rather than on arbitrary grounds. There are several
such tests, only one of which will be presented.

The Q Test
The Q Test is a very simple test for the rejection of outliers. In this test one calculates a number

called Q
exp

 and compares it with values, termed Q
crit

, from a table. If Q
exp

>Q
crit

, then the number can be
rejected on statistical grounds. Q

exp
 is calculated as follows:

Q
exp

 = |questionable value - its nearest neighbour| (1-10)
range

An example will illustrate the use of this test.

Suppose that the following data are available: 25.27, 25.32, 25.34, and 25.61. It seems as though the
largest datum may be an outlier. Qexp is then calculated.

Qexp = (25.61-25.34)/(25.61-25.27) = 0.79

The values of Qcrit are then examined in statistical tables (see Appendix B). These values depend on the
number of trails in the data set, in this case 4. The values are as follows:

Qcrit = 0.76 at 90% confidence.

Qcrit = 0.85 at 96% confidence.

Qcrit = 0.93 at 99% confidence.

Since Qexp>Qcrit at 90% confidence, the value of 25.61 can be rejected with 90% confidence. What does this
mean? It means that in rejecting the datum the experimentalist will be right an average of 9 times out of 10,
or that the chances of the point actually being bad are 90%. Is this the one time out of 10 that the point is
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good? This is not known! When data are rejected, there is always a risk of rejecting a good point and
biasing the results in the process. Since Qexp < Qcrit at the 96% and 99% levels, the datum cannot be
rejected at these levels. What this says is that if one wants to be right 96 times or more out of 100, one
cannot reject the datum. It is up to you to select the level of confidence you wish to use. STATISTICAL
TESTS DO NOT GIVE ABSOLUTE ANSWERS, THEY JUST TELL YOU THE ODDS.

1.2 PROPAGATION OF ERROR IN CALCULATIONS
It is an understatement to say that propagation of error calculations are unexciting. However, it is

useful to know how errors propagate through a calculation or a procedure, or, in other words, how to
calculate the error in the result of a calculation or procedure if you know the errors of all the numbers
entering the calculation or of all the steps in the procedure. Unfortunately, determinate errors (bias)
propagate through a calculation differently (since they are unidirectional) than indeterminate (random)
errors. In this text only indeterminate errors will be considered. Since many determinate errors are not
only unidirectional but are constant, they will not add to or change the standard deviation. For this
reason it will be assumed that the standard deviation of a number arises only from indeterminate errors
and that the standard deviation is a measure of the indeterminate error associated with a number.

Propagation of error calculations can provide information on which step in a procedure has the
most error associated with it. This will allow you to select the proper step to improve if the errors in the
procedure are too high. It can also allow you to select a step which can be done more quickly (and thus
less precisely) if the error in the procedure is satisfactory and is not significantly affected by the step to
be changed. Finally such calculations can indicate how low each individual step’s standard deviation
must be to achieve a result for the overall procedure with a desired standard deviation.

Performing a propagation of error calculation for indeterminate error basically involves applying
a set of “rules” to the standard deviations of the numbers entering the calculation. In the following
discussion “s” will represent the estimate of the absolute standard deviation and “s

r
” that of the relative

standard deviation. As indicated above the rules given below apply only to indeterminate errors.

1.2.1 ADDITION OR SUBTRACTION, y = a±b±c:
The absolute variance of the result, y, equals the sum of the variances of a, b, and c etc.

(1-11a)

or (1-11b)

1.2.2 MULTIPLICATION OR DIVISION, y = ab/c:
The relative variance of y equals the sum of the relative variances of a, b, and c.

(1-12a)

or (1-12b)

and since (1-13)

(1-14)

s s s sy a b c
2 2 2 2= + + +L

s s s sy a b c= + + +2 2 2 L

( ) ( ) ( ) ( )s s s sy r a r b r c r
2 2 2 2= + +

( ) ( ) ( ) ( )s s s sy r a r b r c r= + +2 2 2

( ) ( )s s y s y sy r y y y r= =  or  

s y s a s b s cy a b c= + +( ) ( ) ( )2 2 2
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The case of addition of or multiplication by a constant that is very accurately known, e.g. a
molecular mass or a conversion factor, makes use of the same rules but is often somewhat simpler. In
this instance it is assumed that s

k
, the standard deviation of the constant, k, is essentially zero. Thus

For y = a±k,     s
y
 = {s

a
2 + s

k
2}1/2 = s

a

For y = ak,           (s
y
)

r
 = {(s

a
)

r
2 + (s

k
)

r
2}1/2 = (s

a
)

r

Note, however, that in the latter case s
y
 ≠ s

a
. Instead s

y
/y = s

a
/a or s

y
 = (y/a)s

a
 = ks

a
. (This formula is

slightly different for division.)

1.2.3 RAISING TO A POWER, y = ax:
In this case x is assumed to be exact, e.g. 2 or ½.

(1-15)

1.2.4 TAKING LOGS OR ANTILOGS (BASE 10):
When the result is the logarithm to the base ten of a number, y = (log)

10
a

(1-16)

and when the result is the antilog to the base ten of a number, y = (antilog)
10

a  or  y = 10a

(1-17)

The best method for learning how to apply these “rules” is to take a few examples.

Calculate the difference between the values 4.715±0.002 and 4.693±0.003 and the absolute and relative
standard deviations of the result.

It is normal procedure to calculate the result first. Thus,

y = 4.715 - 4.693 = 0.022

Since the only mathematical operation involved in this calculation is subtraction, the  applicable equation
for the absolute standard deviation is Eqn. (1-11).

sy = {(0.002)2 + (0.003)2}1/2 = 0.0036 = 0.004

The relative standard deviation is calculated using Eqn. (1-13).

(sy)r = 0.0036/0.022 = 0.16 (or 16% relative standard deviation)

In the above example note that both numbers entering the calculation are accurately known, the
number 4.715 has a relative standard deviation of 0.04% and 4.693 has an rsd of 0.06%, yet the result
of the calculation has an rsd of 16%. This illustrates that differences between two similar numbers are
usually not very accurate (on a relative basis), even when the numbers entering the calculation are
accurately known.

( ) ( ) ( )s x s s yx sy r a r y a r= =  or  

s sy a r= 0 43429. ( )

( ) . .s s s ysy r a y a= =0 43429 0 43429  or  
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A pH meter can normally measure with an accuracy of ±0.01 pH unit. Assuming that pH = -log[H+], what is
the concentration of hydrogen ion and its standard deviation in a solution whose pH is measured as 4.39?

y = [H+] = 10-4.39 = 4.074x10-5 mol/L

Since the mathematical operation involves taking an antilog to the base ten, Eqn. (1-17) applies.

(sy)r = 0.01/0.43429 = 0.023

However, the absolute standard deviation is required, so Eqn. (1-13) must be used to get the final result.

sy = (4.074x10-5)(0.023) mol/L = 9.38x10-7 mol/L

The final result would be [H+] = (4.07±0.09)x10-5 mol/L.

What is the standard deviation of y in the calculation shown below?

y = (1.375±0.003)(5.893±0.009) + 8.32±0.03

In this example y = 16.423

This example is a bit more complex since both multiplication and addition are involved. Multiplication will
involve relative standard deviations and addition will involve absolute standard deviations. Thus this type of
problem must be done in steps, involving only one type of standard deviation per step. The order in which
this is done will depend on the problem. In the above example the multiplication should be done first,
followed by the addition. Care must be exercised not to intermix or confuse the different standard deviations
in the various steps.

The multiplication step will be performed first, thus (1.375)(5.893) = 8.1029. The standard deviation of this
intermediate result must be calculated using Eqn. (1-12), which requires relative standard deviations.

sr of 1.375 = 0.003/1.375 = 2.18x10-3

sr of 5.893 = 0.009/5.893 = 1.53x10-3

sr of 8.1029 = {(2.18x10-3)2 + (1.53x10-3)2}1/2 = 2.66x10-3

Now the summing step must be performed: thus 8.1029 + 8.32 = 16.423, the final result. The standard
deviation of the final result must be calculated using Eqn. (1-11), which requires absolute standard deviations.
The value for the number 8.32 is already known (0.03), but the value for 8.1029 must be calculated from its
relative standard deviation using Eqn. (1-13). (These interconversion steps are easy to forget when doing
this type of calculation.)

s of 8.1029 = 2.66x10-3(8.1029) = 2.16x10-2

s of 16.423 = {(2.16x10-2)2 + (0.03)2}1/2 = 0.037 = 0.04

Thus the final result would be reported as 16.42±0.04.

In the above example, the use of Eqn. (1-14) might have saved a few steps in the calculation.
However, when learning how to do these types of problems, the use of “shortcuts” may be
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counterproductive. Almost all “real world” calculations involve a mixture of types of operations and
thus involve both absolute and relative standard deviations. Successful application of the rules for
propagation of errors requires attention to interconversions between the two types of standard deviations.
The final example again illustrates this.

Assume that you are preparing a solution of NaCl. You weigh 0.2434 g of NaCl, place this in a 100 mL
volumetric flask, and dilute to the mark with distilled water. You wish to estimate the standard deviation of
the molarity of the resulting solution. In this example we will assume that the salt is 100.00% pure, that the
volumetric flask holds exactly 100.00 mL of solution if properly filled, and that the balance is in perfect
calibration.

The exact data are as follows: the GFM of NaCl is 58.443 g/mol, the mass of the weighing paper is 0.1374
g, that of the paper plus salt is 0.3808 g, the standard deviation of the GFM is ±0.001 g/mol, that of a single
weighing is ±0.0002 g, and that of filling a 100 mL vol. flask is ±0.02 mL.

This may seem like a very difficult problem since you need an equation in order to apply the rules for
propagation of error, and you have not been given one. Thus the first step is to derive an equation that
presents the result as a function of all the variables. This is the first step in all such problems. In this case
the first step is the derivation of the equation for the molarity, followed by calculation of the molarity.

M = moles/volume = {mass/GFM}/vol.

M = {(0.3808 g - 0.1374 g)/58.443 g/mol}/0.1000 L = 0.04165 mol/L

It can be seen from the above that one subtraction and two divisions are involved in the calculation. Thus
you are again faced with the problem of separating the calculation into steps involving different operations.
In this case the subtraction step (involving absolute standard deviations) will be performed before the
division steps (involving relative standard deviations). Eqn. (1-11) is used to calculate the standard deviation
of the mass, 0.2434 g.

smass = {(0.0002 g)2 + (0.0002 g)2}1/2 = 0.00028 g

For the divisions Eqn. (1-12) is used and the result of both divisions can be calculated in a single step.

(sM)r = {(smass)r
2 + (sGFM)r

2 + (svol)r
2}1/2

However, this equation requires the use of relative standard deviations, and these must be calculated.

(smass)r = 0.00028 g/0.2434 g = 1.2x10-3

(sGFM)r = (0.001 g/mol)/(58.443 g/mol) = 1.7x10-5

(svol)r = 0.02 mL/100 mL = 2.0x10-4

The semifinal calculation can now be performed.

(sM)r = {(1.2x10-3)2 + (1.7x10-5)2 + (2.0x10-4)2}1/2

(sM)r = {1.4x10-6 + 2.9x10-10 + 4.0x10-8}1/2 = 1.2x10-3

Since the result of the above calculation is a relative standard deviation and the absolute deviation is
usually desired, the final calculation must use Eqn. (1-13) to achieve the desired result.
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sM = M(sM)r = (0.04165 mol/L)(1.2x10-3) = 5.0x10-5 mol/L

The final result would thus be reported as (0.04165±0.00005) M

Note in the above example that the uncertainty in the GFM had no effect on the final result and it
could have been ignored in the calculation (as is usually the case). The step involving dilution in the
volumetric flask had such a small standard deviation that it did not affect the final result either. The
only step that contributed significantly to the uncertainty in the answer was the weighing. If a more
precise result were desired, the weighing step would be the first to be examined for improvement.

Also regarding the above example, the question might be asked - what effect would it have if the
salt was only 99.8% pure, or the volumetric flask held 100.2 mL when properly filled, or the balance
weighed light by 0.0003 g? These are all determinate errors which would affect the accuracy of the final
result (the molarity of the solution), but they would not affect the calculated standard deviation, since
they are constant errors and do not affect the precision of the steps in the procedure in which they are
involved. In the absence of determinate error, the standard deviation gives an estimate of the error in the
result (or the accuracy of the result). If determinate error is present, the standard deviation indicates the
precision of a measurement, but no longer provides an estimate of the accuracy. This situation would be
analogous to that depicted in Figure 1-2, Case III.

1.3 LINEAR LEAST SQUARES CURVE FITTING
In science the behaviours of many systems follow mathematical relationships, often linear

relationships. The goal of many investigations is to discover these relationships. This is normally done
by measuring a dependent variable, y, as a function of one or more independent variables, x

i
, and

plotting these data appropriately with the mathematical relationship which is believed to apply to the
system in mind. If the plot exhibits the expected behaviour, e.g. a straight line, then the relationship is
confirmed. When measuring a single quantity, the best result is obtained by making a set of measurements
and taking the mean rather than relying on a single measurement. The reason for this, as explained
above, is that errors will enter into the procedure to provide a distribution of values rather than a single
value. The same effect will occur when making measurements at more than one value of x; errors will
occur which produce scatter in the data points for the plot. The question then arises - is there some
method of obtaining the best possible curve through data points with scatter?

Least squares curve fitting, more properly called least squares regression analysis, is a method of
obtaining the “best” fit of experimental data to a model (a mathematical equation). The best known
example of this is fitting data to a straight line, y  = mx + b. This is especially easily done with computers
and many computer programs, including all spreadsheet programs, contain procedures to perform this
operation. Since many relationships in science are believed to be linear and since the fitting is done by
computer, there is an unfortunate tendency to accept the results of such fittings without question. Thus
some understanding of the least squares method should be made available to those who use the method.
That is the purpose of this section.

1.3.1 THE GENERAL METHOD OF LEAST SQUARES
The general mathematical model for the behaviour of a system can be written as:

(1-18)

where y is the dependent variable, the x
j
 are the independent variables, and the a

k
 are constants that

define the model, often called parameters.

y f x x x a a am k= ( , , , , , , , )1 2 1 2L L
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For a linear, first order case with one independent variable (the most familiar situation)

(1-19)

Errors in measurement will provide enough scatter in the measured values of the variables to
prevent the measured data points from falling on the curve to which the data are being fit. The residuals
are defined as the differences between the measured values of x

ij
 and y

i
 and those calculated from the

model equation.

(1-20)

(1-21)

where Y
i
 is the ith experimental value of y, y

i
 is

the value calculated from the model equation,
X

ij
 is the ith experimental value for the jth

independent variable, x
j
, and x

ij
 is the value

calculated from the model equation. For the
simple first order linear case above, j = 1 (there
is only one independent variable). These ideas
are illustrated, also for the first order linear case,
in Figure 1-4.

The sum of the squares of the residuals
(RSS) is now defined as

(1-22)

where n is the number of data point sets in the data and m is the number of independent variables. The
residuals, and thus the sum of the squares of the residuals, change as the parameters (the a

k
) change,

since changing the parameters changes the position of the model curve but not the experimental data.
The “best” values of the model parameters are defined as those that produce a minimum in RSS.

This forces the plot to approach all the data point sets as closely “on average” as possible.

The First Order Linear Case
We could continue with the general treatment; however, the most useful case at the level of this

text is the first order linear model where m = j =1. Thus this model (y = a
1
x + a

0
) will be treated in some

detail. If m = j = 1, then the sum of the squares of the residuals becomes

(1-23)

It is a difficult task to properly estimate the amount of error to assign to y
i
 and to x

i
 for any data

point pair. In other words it is difficult to simultaneously assign values to both (R
y
)

i
 and (R

x
)

i
. Thus a

simplifying assumption is now almost always made, and it is very important to understand this
assumption. In many cases the errors in x are much less than those in y. In other words X can be set
much more precisely than Y can be measured. If this is so, then the problem simplifies greatly. At his
point we will make that assumption.

(1-24)
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and (1-25)

It can now be stated that

(1-26)

since x
i
 = X

i
. The symbol Σ is taken to represent

the sum from i = 1 to i = n. Since there is
assumed to be no error in x, the experimental
points will lie directly above or below the
corresponding fitted points on the model line
and the residuals as depicted in Figure 1-4 now
change to those shown in Figure 1-5. The
expression for the sum of squares of the
residuals now becomes

(1-27)

We now need to determine which values
of a

1
 and a

0
 minimize RSS, these will be the

“best” values of a
1
 and a

0
. This is done by

taking the first derivative of RSS with respect
to both a

1
 and a

0
, and setting these equal to

zero.

(1-28)

or (1-29)

or (1-30)

and (1-31)

or (1-32)

or (1-33)

Eqns. (1-30) and (1-33) are two simultaneous linear equations which are easily solved by standard
methods and provide the least squares or “best” values for a

1
 and a

0
. The results of this operation are as

follows:

(1-34)

(1-35)
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One calculates all the sums (ΣX
i
, ΣX

i
2, ΣY

i
, ΣX

i
Y

i
), plugs these into Eqns. (1-34) and (1-35), and

calculates a
1
 and a

0
. Slightly different, but equivalent, expressions (algorithms) are often found in the

literature. Two features of these equations should be noted, (a) the denominators in the two expressions
are the same and thus only need to be calculated once, and (b) (ΣX

i
)2 ≠ ΣX

i
2.

As an example, consider the X-Y data set shown below in the first two columns, which is assumed to be first
order (this data set will be revisited in Chapter 3). Columns 3 and 4 are needed for the sums in the least
squares calculations and have been calculated from columns 1 and 2.

X Y X2 XY

0.000 0.000 0.0 0.0
2.00x10-5 0.189 4.00x10-10 3.780x10-6

4.00x10-5 0.383 1.60x10-9 1.532x10-5

6.00x10-5 0.571 3.60x10-9 3.426x10-5

8.00x10-5 0.756 6.40x10-9 6.048x10-5

1.00x10-4 0.948 1.00x10-8 9.480x10-5

SUM 3.00x10-4 2.847 2.20x10-8 2.0864x10-4

Thus ΣXi = 3.00x10-4, ΣYi = 2.847, ΣXi
2 = 2.20x10-8, ΣXiYi = 2.0864x10-4, (ΣXi)2 = 9.00x10-8, n = 6

a0 = {3.00x10-4(2.0846x10-4) - 2.20x10-8(2.847)}/{9.00x10-8 - 6(2.20x10-8)}

a0 = 4.2x10-11/4.2x10-8 = 0.001

a1 = {3.00x10-4(2.847) - 6(2.0864x10-4)}/-4.20x10-8 = 9.47x103

The best straight line through the data in columns 1 and 2 will thus be

Y = 9.47x103X + 0.001

Note that including the first point (X=0, Y=0) does not force the intercept to be zero. The question is often
asked, “should such a point be included in the data set”? The answer is YES, as long as it is known that Y
is actually zero when X is zero.

Individuals seldom need to use the above equations to obtain the best values for the parameters of
a first order linear model, since there are many computer programs written to provide this information,
including all spreadsheet programs and statistics packages. These programs may also provide additional
information such as estimates of the standard deviations of the parameters. When using such programs
it should be kept in mind that it is assumed that: (a) all the error is found in the y values and (b) that all
data have the same precision. If either or both of these assumptions are incorrect, more sophisticated
fitting methods are available.

A word of caution is in order - the method of least squares can fit any data to a linear model (first
order equation), the data do not have to make a straight line. Furthermore, the results do not necessarily
indicate whether the data are truly linear. Thus it is always advisable to plot the data along with the
resulting least squares line to determine whether a linear model should be applied. Observation of the
resulting graph is an excellent way to check the “goodness of fit”.
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1.3.2 SOME GENERAL CONSIDERATIONS
A very specific, but very useful, case, the linear first order model, has been treated in some detail:

 y  = a
1
x + a

0
, all error in y, all values of y have equal variance.

What will occur if the model is more complicated? One might imagine several examples:

1. The order of the equation is greater than one, e.g. y  =  a
0
 + a

1
x + a

2
x2 + …

2. There is more than one independent variable, e.g. y  =  a
0
 + a

1
x

1
 + a

2
x

2
 + …

3. Some combination of 1. and 2., e.g. y  =  a
0
 + a

1
x

1
 + a

2
x

1
2 + a

3
x

2
 + a

4
x

2
2 + a

5
x

1
x

2
 + …

If in the above all error can be assumed to be in the y values, then all of these examples fall into
the “linear” least squares category and exact solutions are available using the same mathematical
procedure as above (the algebra becomes somewhat more complicated and the methods will not be
discussed here). What, then, is meant by linear least squares? A linear least squares solution is available
when y is linear in the parameters, not in the independent variables. Thus a second or higher order
polynomial is a linear case, since y is linear in the a

k
.

What happens if either (or both):

1. y is not linear in the parameters, e.g. y  =  a
0
 + a

1
sin(a

2
x). Here y is linear in a

0
 and a

1
, but not

a
2
.

2. The error in x is approximately equal to or greater than that in y.

Now the system becomes non-linear. One approach is to use a Taylor expansion of f(x
j
, a

k
) and

neglect all terms higher than first order. In other words, one linearizes the system. Guesses must now be
made for the values of all the parameters and an iterative improvement process is used to zero in on the
“correct” values for the parameters. The success of this process depends, in part, on the accuracy of the
initial guesses. The results are not exact, but are usually the best that can be accomplished. Computer
programs are also available to do this sort of least squares fitting.

1.4 QUANTITATIVE CALCULATIONS INVOLVING CONCENTRATION
Before discussing other types of quantitative calculations, a review and discussion of various

methods of expressing concentration is in order.

1.4.1 METHODS FOR EXPRESSING CONCENTRATION.
There are a number of different methods for expressing the concentration of a solute in a solution.

Only those of importance in analytical chemistry will be discussed below.

Weight by weight methods:
Three of the several methods are presented here. All weight by weight methods are very similar.

1) Percent by weight or parts per hundred. This method is usually used for concentrated reagents
such as sulfuric acid or ammonia. Percent by weight is defined simply as the grams of solute in 100
grams of solution (not solvent). More specifically:

% by wt. = (g solute/g solution)(100) (1-36)

Two examples will be given to illustrate this method of specifying concentration.



1-18

If 1.00 g of NaCl is dissolved in 10.0 g of H2O, the % by wt. of NaCl is [1.00 g/(1.00 g+10.0 g)](100) or
9.09%.

Reagent sulfuric acid is 96% by wt. This means that out of every 100 g of solution 96 g are H2SO4 and 4 g
are H2O.

Compute the volume of 96.0% H2SO4 needed to prepare 250 mL of a 1.00 molar solution, if the density of
the reagent is 1.81 g/mL.

Step 1: calculate the moles of pure H2SO4 needed. From the definition of molarity (see below)
moles = (volume)(molarity) = (0.250 L)(1.00 mol/L) = 0.250 mol.

Step 2: calculate the mass of pure H2SO4 needed.
mass = (mol)(GFM) = (0.250 mol)(98.08 g/mol) = 24.52 g.

Step 3: calculate the mass of 96% reagent needed.
96.0% of the mass of reagent = 24.52 g, or

(0.960)(mass of reagent) = 24.52 g.

Thus mass of reagent = 24.53 g/0.960 = 25.54 g.

Step 4: calculate the volume of 96% reagent needed. From the definition of density, d = mass/volume, one
obtains

volume = mass/d = 25.54 g/1.81 g/mL = 14.1 mL

2) Parts per million or ppm. This method is used for dilute solutions. It is defined simply as the
grams of solute in 106 g of solution.

ppm = (g solute/g solution)(106) (1-37)

If 2.5 mg of NaCl is dissolved in 1000 g of H2O, 1.0 mg of Na+ will be present.
Thus ppm Na = {0.0010g/(1000g+0.0025g)}(106) = 1.0 ppm.

If the solution is very dilute (often the case for such solutions), the density can be taken as 1.00 g/mL
or 1000 g/L and 1.00 L will weigh 1000 g. In this case the definition of ppm becomes

ppm ≈ (mg of solute)/(litres of solution) (1-38)

NOTE : this definition cannot be used for nonaqueous solutions since such solutions rarely have a
density of 1.00 g/mL.

How much Fe(NH4)2(SO4)2·6H2O (ferrous ammonium sulfate, GFM = 392.16 g/mol) must be weighed out to
prepare 250 mL of a 10.0 ppm solution of Fe(II) (GAM of Fe = 55.847 g/mol)? A 10.0 ppm solution contains
10.0 mg/L of Fe(II) (NOT 10.0 mg/L of ferrous ammonium sulfate).
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mass of Fe = (10.0 mg/L)(0.250 L) = 2.50 mg

mass of Fe(NH4)2(SO4)2·6H2O = (2.50 mg)(392.16 g/mol)/(55.847 g/mol) = 17.6 mg.

3) Parts per billion or ppb. This method is used for extremely dilute solutions. It is defined as
grams of solute in 109 g of solution.

    ppb = (g solute/g solution)(109) (1-39)

For solutions that have a density of approximately 1000 g/L

ppb ≈ (µg of solute)/(litres of solution) (1-40)

A solution which contains 5.0 µg of NaCl in 500 mL of solution will contain 2.0 µg of Na+. Such a solution
will contain (2.0 µg Na+)/0.500 L or 4.0 ppb Na.

Formality.
This is a method of expressing concentration with which you are probably unfamiliar. It is used to

differentiate that which is dissolved in solution from that which actually exists in solution at equilibrium.
Some chemists refer to formality as “analytical concentration” because it is the numerical value
determined in most analyses. The formality of a solution is the number of formula weights or moles of
a substance dissolved in or placed in a litre of solution. This does not consider what happens to that
substance after it is in the solution. In other words it does not take account of any chemical reactions
that might occur in solution. Specifically

Formality = F = (mol solute dissolved)/(volume of soln.) = mol/V (1-41)

The units or dimensions are mol/L. Some analytical texts do not use formality (most mention it)
but it will be used in this text, especially when discussing acid-base equilibria.

Molarity.
Molarity is the number of moles of a substance actually present per litre of solution, or

Molarity = M = (mol solute present)/(volume of soln.) = mol/V (1-42)

The units of molarity are mol/L. Unfortunately these are the same units as formality and often
molarity and formality are confused. Remember that formality represents what is placed in solution,
molarity represents what actually exists in solution at a given time. The molarity of a material is often
represented by its chemical symbol or formula written within square brackets, e.g. [Na+] (this indicates
the actual material present in solution). Formalities are never written this way.

If one dissolves 58.5 g of NaCl (GFM of NaCl = 58.5 g/mol) in enough water to form 1.00 L of solution, the
formality of NaCl will be 1.00 mol/L. However, NaCl does not exist as such in solution; it completely dissociates
to form Na+ and Cl- ions. 1.00 mol of NaCl will form 1.00 mol of both Na+ and Cl- ions. Thus one does not
speak of the molarity of NaCl, but rather of the molarity of Na+ and Cl-. [Na+] = [Cl-] = 1.00 mol/L.
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6.005 g of pure acetic acid (GFM = 60.05 g/mol) are dissolved in water to form 1.000 L of solution. What are
the formalities and molarities of all the solution components? Assume that acetic acid ionizes 3.0 % in this
solution.

Mol acetic acid dissolved = 6.005 g/60.05 g/mol = 0.1000 mol

F = formality = 0.1000 mol/1.000 L = 0.1000 mol/L

For the purposes of this problem it will be assumed that acetic acid reacts as follows when dissolved in
water.

CH3COOH → CH3COO- + H+

If 3.0% of the acid ionizes, it can be stated that

mol CH3COO- = mol H+ = (0.030)(0.1000 mol) = 0.0030 mol

mol unionized CH3COOH = 0.1000 mol - 0.0030 mol = 0.0970 mol

[H+] = [CH3COO-] = 0.0030 mol/1.000 L = 0.0030 M

[CH3COOH] = 0.0970 mol/1.000 L = 0.0970 M

What is the molarity of a dilute solution (d = 1.00 g/mL) of 0.10 ppm Cu2+ (GAM = 63.546 g/mol)? If the
solution is dilute, the definition of ppm can be taken as ppm = mg/litre.

0.10 ppm = 0.10 mg/L = 1.0x10-4 g/L

To go from g/L to mol/L one needs to calculate the number of moles in 1.0x10-4g.

mol = 1.0x10-4 g/63.546 g/mol = 1.57x10-6 mol.

Thus 0.10 ppm Cu(II) = 1.57x10-6 mol/L = 1.6x10-6 M

1.4.2 CALCULATIONS INVOLVING DILUTION.
Often samples subjected to analytical procedures are diluted before analysis, yet the results are

needed for the original samples, not the diluted solutions. Also many very dilute solutions are prepared
by a technique called serial dilution since the amounts of solute required are too small to weigh directly.
In both cases calculations involving dilution are required and should now be discussed.

The important thing to remember when performing calculations involving dilutions is that the
number of moles of material is the same in the solution both before and after dilution. This fact can
always be used to determine the concentration either before or after dilution.

5.00 mL of a 0.0400 F solution of HCl are diluted to 100 mL. What is the final concentration of HCl?

Since F = mol/V (by definition), then mol = FV

mol HCl (in both solutions) = (0.0400 mol/L)(0.00500 L) = 2.00x10-4 mol.

Formality (of the second solution) = mol/V = 2.00x10-4 mol/0.100 L = 0.00200 F.

What volume of a 1.00 F solution of ammonia (NH3) is needed to prepare 500 mL of a 0.0250 F solution?
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mol NH3 (both before and after dilution) = (0.0250 mol/L)(0.500 L) = 0.0125 mol.

V of 1.00 F NH3 = mol/F = 0.0125 mol/1.00 mol/L = 0.0125 L = 12.5 mL.

10.0 mL of a sample are diluted to 50.0 mL before analysis in order to add reagents for the analysis. The
concentration of Ca2+ in the diluted solution is found to be 0.00354 M. What is the concentration of calcium
in the original sample?

mol Ca2+ (in both solutions) = (0.00354 mol/L)(0.0500 L) = 1.77x10-4 mol.

Molarity of Ca2+ in original sample = 1.77x10-4 mol/0.0100 L = 0.0177 M.

Often such calculations can be simplified by the use of dilution factors. These factors are the
ratios of the initial volume to the final volume or vice versa depending on whether the final or initial
concentration is to be calculated. Thus

(1-43)

and (1-44)

where C is concentration, V is volume, i refers to initial conditions, and f refers to final conditions.
Equations (1-43) and (1-44) come directly from the fact that the moles are the same before and after
dilution, C

i
V

i
 = C

f
V

f
. To remember which volume goes in the numerator recall that the final concentration

will always be less than the initial concentration. Thus when calculating final concentration, the smaller
volume goes in the numerator of the dilution factor and vice versa. In the cases of the first and last
examples given above.

Formality of HCl = (0.0400 F)(5.00 mL/100 mL) = 0.00200 F

Molarity of Ca2+ = (0.00354 M)(50.0 mL/10.0 mL) = 0.0177 M

If you are unsure about the use of dilution factors, use the first method involving moles. Although
it is longer, it will produce correct results without guessing about which way to set up the ratio of the
dilution factor.

A second area in which dilution is often involved is in the preparation of solutions for calibration
curves (refer to Chapter 3). An example will best illustrate this type of calculation.

You wish to prepare at least 50 mL each of solutions containing 0.50, 1.00, 2.00, and 4.00 ppm Pb2+ for the
calibration curve in a lead analysis. The most concentrated of these solutions will contain only 4.00 mg/L of
lead. An ordinary analytical balance can weigh accurately to only about ±0.2 mg. To obtain a precision of
about 1 in 400 (0.01 mg in 4.00 mg) at least 80.0 mg of lead must be weighed. Assuming that you use
Pb(NO3)2 (GFM = 331.2 g/mol) as your source of lead (GAM = 207.2 g/mol), you must weigh

mass of lead nitrate = (80.0 mg)(331.2 g/mol/207.2 g/mol) = 127.9 mg

C C
V

Vf i
i

f
= 



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i
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If this amount of material is dissolved in 1.00 L of water, then the concentration of Pb(II) will be 80.0 ppm
(80.0 mg/L). This must be diluted by a factor of 20 to make the 4.00 ppm solution desired (80.0 ppm/20 =
4.00 ppm). One way in which this can be accomplished is by diluting 5.00 mL of the 80.0 ppm solution to
100 mL. It could also be done by diluting 25.0 mL to 500 mL - the dilution factor in both cases is 20
(100 mL/5 mL = 500 mL/25 mL = 20).

Conc. Pb(II) = (80.0 ppm)(5.00 mL/100 mL) = 4.00 ppm

The 2.00 ppm solution can be prepared by diluting the 4.00 ppm solution, requiring a dilution factor of two
(4.00 ppm/2.00 ppm = 2). This could be achieved by diluting 50.0 mL of the 4.00 ppm solution to 100.0 mL,
leaving 50 mL of the 4.00 ppm solution for the calibration curve (assuming it is not needed for any other
purpose).

Conc. Pb(II) = (4.00 ppm)(50.0 mL/100 mL) = 2.00 ppm

Likewise the 1.00 ppm solution can be prepared from the 2.00 ppm solution by a factor of two dilution, and
the 0.50 ppm solution can be prepared from the 1.00 ppm solution in a similar fashion. The final result
would be 50.0 mL each of 4.00, 2.00, and 1.00 ppm and 100.0 mL of 0.50 ppm for the calibration curve.

If 500.0 mL of the 4.00 ppm solution had been prepared (by diluting 25 mL of the 80 ppm solution to 500
mL) instead of 100.0 mL, the 2.00 ppm could have been prepared in the same fashion (by diluting 50.0 mL
of the 4.00 ppm solution to 100.0 mL). However, the 1.00 ppm solution could have been prepared from the
4.00 ppm solution using a dilution factor of 4 (dilute 25.0 mL of the 4.00 ppm solution to 100.0 mL). The 0.50
ppm solution could have been prepared from the 2.00 ppm solution also using a dilution factor of 4 (by
diluting 25.0 mL of 2.00 ppm to 100.0 mL). The final result would be 425 mL of 4.00 ppm, 75 mL of 2.00
ppm, and 100 mL each of the 1.00 and 0.50 ppm solutions.

This illustrates that there are usually several ways to prepare the same series of serially diluted solutions.
The method chosen will depend on several factors including the concentrations desired, the volumes of
solutions needed, and the volumetric glassware available. The first scheme explained above would require
a 5.00 mL pipette, 25 mL (or 50.0 mL) pipettes and 100.0 mL volumetric flasks and would provide exactly
the amounts of solutions needed. The second scheme would require 25 mL pipettes, one 500.0 mL and
several 100.0 mL volumetric flasks. It would provide extra solution volumes in case of additional requirements.
There is no general formula that can be applied to such calculations, each case is unique.

1.5 QUANTITATIVE CALCULATIONS INVOLVING TITRATIONS
The titration is one of the oldest methods of performing quantitative analyses, yet it is still extremely

useful. Titrations have two very important features: they employ very simple and inexpensive
“instrumentation”, the buret, and they are generally one of the most accurate methods of analysis available.
The accuracy often achievable is 0.1% and it can sometimes be extended to 0.01%. However, titrations
are usually not capable of trace analysis, that is analysis of components which make up less than 1% of
a sample or components that are less than about 10-3 M in solution  concentration. Thus titrations are
used for analysis of major sample components or fairly concentrated solutions when high accuracy is
required. They are also used when only a few samples need analysis since it is usually easier to set up
a titration than a complicated instrumental procedure.
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Most readers will be familiar with titrations. They are nothing more than chemical reactions that
are carried out under strictly controlled conditions with care taken to determine exactly when the reaction
is finished. This concept leads to two definitions that should be stressed at this time.

1) The equivalence point is that point in the titration at which exactly enough titrant (the reagent
in the buret) has been added to completely consume all the titrand (the reagent in the reaction
flask or beaker) “in theory”.

2) The end point is that point at which the indicating device or substance signals the equivalence
point. It is the point the analyst takes as the equivalence point.

One wants the end point to equal the equivalence point (or else there is an error) and for the
present this will be considered to be the case. Titrations will be discussed in general because all titrations
are very similar - if you thoroughly understand one, you understand them all.

It is customary to place the reactant whose concentration is known (the standard solution) in the
buret, thus making it the titrant. The sample which contains the analyte, the substance whose
concentration is to be determined, is placed in the reaction vessel, making it the titrand. This is usually
the most convenient way to carry out a titration. In the following discussions T will represent the titrant,
U will represent the unknown (the analyte) or titrand, and P

1
, P

2
, etc. will represent the products of the

titration reaction .

1.5.1 DIRECT  TITRATIONS
In all titrations the calculations depend on the stoichiometry of the titration reaction, to be specific,

the relationship between the moles of T and U in the reaction. The moles of P
1
 and P

2
 do not enter into

the calculation. The following general reaction will be assumed

aT + bU → cP
1
 + dP

2
 + …

At the equivalence point exactly enough T has been added to just react with all the U and there is
“no” T or U in the titration flask (assuming that the titration reaction goes completely to the right). Thus
it can be stated that

(original mol U)/(mol T added) = b/a (1-45)

Since the moles of U are usually the quantity of interest, this is the quantity to be determined.

original mol U = (b/a)(mol T added) (1-46)

Note that the products do not enter the calculation, but that the reaction stoichiometry does through
the ratio (b/a). Thus one must have a balanced equation to do such calculations. The moles of titrant are
calculated from the formality of the titrant, F

T
. This is done using the basic relation between moles,

formality, and volume.

   mol = (formality)(volume) = FV (1-47)

A set of equations for direct titrations can now be derived for different situations. Let V
T
 represent

the volume of titrant added at the equivalence point.

1) As indicated above, the first step is to solve for the moles of U.

mol U = (b/a)(F
T
V

T
) (1-48)
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Normally one wishes to know more than just the moles of U present in the titration flask.

2) If the sample is a liquid, one often needs to know the formality of the analyte in the liquid.

   mol U = F
U
V

U
, (1-49)

where V
U
 is the original volume of the sample (NOT the volume in the titration vessel at the

equivalence point.) Thus

F
U
V

U
 = (b/a)(F

T
V

T
) (1-50)

or F
U
 = (b/a)(F

T
V

T
)/V

U
(1-51)

Note in this case the original volume of sample must also be accurately known.

3) If the sample is a solid which has been dissolved in some solvent for the titration, then the mass of
analyte may be the desired quantity.

       mass U = (mol U)(GFM
U
) (1-52)

or      mass U = (GFM
U
)(b/a)(F

T
V

T
) (1-53)

Note that, in this case, the sample volume does not enter into the calculation - it does not matter.

4) However, for a solid one generally wants to know the percentage of analyte in the sample.

     %U in sample = (mass U)(100)/(sample mass) (1-54)

or      %U = (GFM
U
)(b/a)(F

T
V

T
)(100)/(sample mass) (1-55)

Practical aspects
The parameters above which must be accurately known for a successful titration are: b/a, which

is determined from the chemical reaction, V
T
 (from the buret), V

U
 (usually from a pipet, if the sample is

a liquid), GFM
U
 (from the periodic table), sample mass (from a balance), and F

T
. The question arises,

how does one know F
T
 accurately? F

T
 is usually determined in one of two different ways:

1) Make up the titrant carefully from a primary standard, e.g. K
2
Cr

2
O

7
.

2) Make up the titrant from a material the purity of which is less than that
of a primary standard, e.g. NaOH, and titrate against a primary standard,
e.g. potassium biphthalate or potassium hydrogen phthalate (KHP - see
Figure 1-6). This procedure is called standardization.

This of course raises another question - what is a primary standard? A primary
standard is a compound that has the following characteristics:

1) an exactly known composition (e.g. known waters of hydration),

2) “no” impurities - at least 99.9% pure,

3) does not react with or take up the components of the atmosphere, e.g. CO
2
, O

2
, or H

2
O,

4) has a form that is easily weighed (e.g. not a fine powder).

The quantity of primary standard involved in the analysis is determined by a weighing. Thus the
final accuracy in almost all analytical procedures is a function of a weighing. The balance is the most
basic analytical tool.

Figure 1-6



1-25

The same equations are used in a standardization titration as in the titration of an unknown. An
example will demonstrate this.

Sulfuric acid is standardized by titration with primary standard Na2CO3. 0.5000 g of dried sodium carbonate
requires 45.00 mL of H2SO4 in the standardization titration. The sulfuric acid is then used to determine the
concentration of NH3 in a sample solution. 50.00 mL of the sample solution require 33.00 mL of the sulfuric
acid in the titration of the sample. What is the formality of ammonia in the sample?

a) Standardization:

1) Write the balanced chemical equation (always do this).

H2SO4 + Na2CO3 → Na2SO4 + CO2 + H2O

2) Establish the relation between the moles of titrant and titrand. This is 1:1 in this case, thus

mol H2SO4 = mol Na2CO3.

3) Substitute the other relations for moles of titrant and titrand.

mol Na2CO3 = mass Na2CO3/GFM = 0.5000 g/106.0 g/mol

mol H2SO4 = FTVT = (0.04500 L)FT

(0.04500 L)FT = 0.5000 g/106.0 g/mol

4) Solve for FT

FT = 0.5000 g/(0.04500 L)(106.0 g/mol) = 0.1048 mol/L

b) Titration of the sample:

1) Write the balanced equation.

H2SO4 + 2NH3 → (NH4)2SO4

2) Establish the relation between the moles of titrant and titrand. This is 1:2 in this case, thus

mol NH3 = 2(mol H2SO4)

3) Substitute the other relations for moles.

mol NH3 = FUVU and mol H2SO4 = FTVT

FUVU = 2FTVT

4) Solve for the formality of the analyte (NH3).

FU = 2FTVT/VU = 2(0.1048 mol/L)(0.03300 L)/(0.05000 L) = 0.1384 mol/L

It is recommended that the reader not try to memorize all the equations derived earlier, but rather
try to solve the problem in a way similar to that presented in the example above.
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1.5.2 BACK TITRATIONS
These are titrations in which a known excess of a standard material or solution is added to a

sample. All the analyte reacts and some standard remains. The remaining standard is then titrated with
a second standard, the titrant. From the known amount of the first standard and the volume and
concentration of titrant, the amount or concentration of analyte is calculated. Back titrations are more
complicated than simple titrations, involving more manipulations and more standard solutions. Thus
they are used only when a simple titration will not work.

In the following “S” will represent the first standard solution, the one added in excess. All other
symbols will retain the same meaning as above.

1) Excess standard solution is added to the sample, consuming all U.

aS + bU → P
1
 + P

2

     mol U = (b/a)(mol of S consumed) = (b/a)(mol S
U
) (1-56)

2) Some S, S
xs

, remains unused. The S
xs

 is then titrated with T

cT + dS → P
3
 + P

4

     mol S
xs
 = (d/c)(mol T at eq. pt.) (1-57)

Total mol S = mol S
T
 = mol S

xs
 + mol S

U
(1-58)

  mol S
T
 = (d/c)(mol T) + (a/b)(mol U) (1-59)

3) Solve equation (1-59) for the moles of U.

  mol U = {mol S
T
 - (d/c)(mol T)}(b/a) (1-60)

or     mol U = (b/a){V
S
F

S
 - (d/c)(V

T
F

T
)} (1-61)

if S is a solution.
One can proceed as was done above to obtain expressions for the mass of U, F

U
 or %U. This will

not be repeated here. Instead an example of a back titration will be presented.

A 1.000 g sample containing CaCO3, a material insoluble in pure water, is dissolved in 100.0 mL of 0.1000
F HCl (an excess) and boiled to dispel the CO2 formed. The remaining HCl is titrated with 0.1000 F NaOH,
requiring 20.00 mL to reach the end point. Calculate the percent CaCO3 in the sample. In this example T is
NaOH, S is HCl, and U is CaCO3.

1) Write a balanced equation for the reaction of S with U and establish the stoichiometric ratio.

    CaCO3 + 2HCl → CaCl2 + CO2(g) + H2O

mol CaCO3 = ½(mol HCl consumed)

2) Write a balanced equation for the reaction of T with the excess S and establish the stoichiometric ratio.

HCl + NaOH → NaCl + H2O

mol excess HCl = mol NaOH

3) Use the expression for the total moles of HCl added to solve for the moles of U, and finally the %U
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total mol HCl = mol for CaCO3 + mol in excess

total mol HCl = 2(mol CaCO3) + mol NaOH

VHClFHCl = 2(mol CaCO3) + VNaOHFNaOH

mol CaCO3 = (VHClFHCl - VNaOHFNaOH)/2

mol CaCO3 = {(0.1000 L)(0.1000 mol/L) - (0.02000 L)(0.1000 mol/L)}/2

mol CaCO3 = 0.004000 mol

mass CaCO3 = (0.004000 mol)(100. 1g/mol) = 0.4004 g

%CaCO3 = (0.4004 g)(100)/(1.000 g) = 40.04%

The above covers most of the types of calculations that must be performed when using titrations
for quantitative analyses.

This section will be completed by asking the question - what happens if the end point is not the
same as the equivalence point? Obviously an error is made. Sometimes the magnitude of that error can
be calculated from theory. If the moles of titrant needed to reach the equivalence point and the moles of
titrant added at the end point can both be calculated, then

%error = 100{(mol T)
e.p.

 - (mol T)
eq.pt.

}/(mol T)
eq.pt.

(1-62)

or     %error = 100{mL T
e.p.

 - mL T
eq.pt.

}/mL T
eq.pt.

(1-63)

These equations may be useful later.

1.6 PROBLEMS

Sections 1.1 and 1.2: Statistical Treatment of Data
1-1) Compute the mean, median, range, absolute and relative standard deviations, and the 80% confidence
interval for the following set of numbers: 73.8, 73.5, 74.2, 74.1, 73.6, and 73.5.  Ans: 73.8, 73.7, 0.7,
0.3

1
, 4.

1
x10-3, and 73.6 - 74.0.

1-2) A group of students is asked to read a buret and produces the following data set: 31.45, 31.48,
31.46, 31.46, 31.44, 31.47, and 31.46 mL. Calculate the mean, percent relative standard deviation, and
95% confidence interval of this data set. Ans: 31.46 mL, 0.04

1
%, 31.45 - 31.47 mL.

1-3) The following data set is available: 17.93, 17.77, 17.47, 17.82, 17.88. Calculate its mean, absolute
standard deviation, and confidence interval at both the 90% and 95% level.  Ans: 17.85, 0.07

0
,

17.77 - 17.93, 17.77, 0.18, 17.55 - 17.99.

1-4) Calculate the mean, relative standard deviation in ppt, and the 90% confidence interval of the
following data set: 41.29, 41.31, 41.30, 41.29, 41.35, 41.30, 41.28. Consult a table of Q values, if
appropriate.  Ans: 41.30, 0.2

5
, 41.29 - 41.31.
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1-5) Report the decimal value of X and its absolute standard deviation. The standard deviations shown
are all absolute deviations.  Ans: -11 ±2.

X=(13.50±0.08-14.50±0.06)(6.08±0.02)/(2.342±0.09-1.786±0.03)

1-6) What are the values of Z and its absolute and relative standard deviations? All standard deviations
shown are absolute. Ans: 0.67, ±0.04, ±0.06.

Z=(808±7/378±5) - (6.59±0.09/4.48±0.05)

1-7) What are the values of X and its absolute standard deviation? All standard deviations shown are
absolute.  Ans: 73.

3
±3.

6
 or 73±4

 X = (31.6±0.9)(1.324±0.018)3

1-8) Calculate the values of Y and its relative standard deviation. All standard deviations shown are
absolute.  Ans: 0.413, 0.015.

 Y = log(100.0±0.5/38.6±0.5)

1-9) You are preparing dilutions of a stock Zn(II) solution using a buret and volumetric flasks. If the
concentration of the stock Zn(II) solution is (0.01271±0.00003) M and if you deliver 15.38 mL of stock
solution from the buret into a 100 mL volumetric flask, what will be the concentration of Zn(II) in the
flask and its absolute standard deviation? Assume that the standard deviation of reading a buret is
±0.02 mL and of filling a 100 mL volumetric flask is ±0.03 mL and remember that the volume delivered
from the buret is the result of two readings, each ±0.02 mL. Ans: (1.955±0.006)x10-3 M.

Problems 1-17, 1-19, 1-20, and 1-26 below also involve propagation of error calculations. These should
be done after the other material in the problem has been mastered.

Section 1.4: Concentration of Solutions and Dilution
1-10) Calculate the volume of glacial acetic acid (100%) needed to prepare 500.0 mL of a 0.250 F
solution. The density of the reagent is 1.05 g/mL.  Ans: 7.15 mL.

1-11) Concentrated reagent ammonia is 57.6% by wt. NH
3
 and has a density of 0.90 g/mL. What is the

formality of ammonia in a solution prepared by addition of 10.0 mL of the concentrated reagent to
distilled water followed by dilution to 2.000 L?  If only 3.0% of the ammonia reacts to form NH

4
+ and

OH-, what is the molarity of the ammonia in the solution?  Ans: 0.15
2
 F, 0.14

8
 M.

1-12) Calculate the formality of H
2
SO

4
 in the concentrated reagent acid if the percent by weight of

H
2
SO

4
 is 96.0% and the density is 1.81 g/mL.  Ans: 17.7 mol/L.

1-13) A certain acid (GFM = 100 g/mol) is 70.0% by wt. and has a density of 1.69 g/mL. You wish to
prepare 2.00 L of a 0.100 F solution of this acid. If you were preparing the solution by weight, how
much reagent acid would you need to weigh out?  If you were preparing it by volume, what volume of
reagent acid would you need?  Ans: 28.6 g, 16.9 mL.
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1-14) The upper allowable limit for the concentration of Pb(II) in drinking water is 5.0 ppb. What is this
in mol/L? Ans: 2.4x10-8.

1-15) A 10.0 mL sample of tap water is added to a 25.0 mL volumetric flask, 10 mL of a special buffer
is added, and distilled water is used to dilute to the mark. This solution is analyzed and found to contain
2.36x10-6 M fluoride. What is the concentration of fluoride in tap water in both mol/L and ppm? Ans:
5.90x10-6 M, 0.112 ppm.

1-16) What mass of KI must be weighed out to prepare 500 mL of 10.0 ppm I- solution (you may use the
simple definition of ppm)? Ans: 6.5 mg.

1-17) What will be the expected precision of the concentration calculated in Problem 16 above if the
standard deviation of weighing is ±0.1 mg (remember that a single mass is the result of two weighings),
and of using a 500 mL volumetric flask is ±0.05 mL? Assume that the gram formula masses are accurate.
Ans: ±0.2

2
 ppm.

1-18) What mass of KI would have to be weighed out to prepare the same solution as in Problem 1-16
above (500 mL of 10.0 ppm I-), if the original salt were dissolved in 100 mL of water and 10.0 mL of
that solution were diluted to 500 mL? Ans: 65.4 mg.

1-19) What would be the expected precision (abs. std. dev.) in the concentration of the solution prepared
in Problem 1-18? In addition to the data given in Problem 1-17 above, assume that the precision of using
a 10 mL pipet is ±0.01 mL and that of filling a 100 mL volumetric flask is ±0.02 mL. Ans: 0.02

4
 ppm.

1-20) Dilute solutions (in the low ppm and the ppb range) cannot be stored for any period of time
because adsorption on the walls of the storage container changes the component concentrations. Thus
many stock solutions are made up at the 1000 ppm concentration level. What mass of lithium bromide
would have to be weighed out to prepare 1.00 L of a 1000 ppm stock solution of Li (use the simple
definition of ppm)? If one were to prepare 1.00 L of a 1.00 ppb solution of Li directly by weighing
lithium bromide, what mass of the salt would have to be weighed out? If 1.00 L of a 1.00 ppb Li
solution were to be prepared by diluting 1.00 mL of the 1000 ppm stock solution to 1.00 L followed by
diluting 1.00 mL of this solution to 1.00 L, what would be the expected absolute precision of the final
concentration? Assume one can weight to ±0.2 mg, can fill a 1.00 L volumetric flask to ±0.1 mL, and
can use a 1.00 mL pipet with ±0.02 mL precision. What procedure establishes the overall precision of
the final concentration?  Ans: 12.51 g, 12.51 µg, ±0.03 ppb, the use of the 1.00 mL pipet.

Section 1.5: Titrations
1-21) A solution of NaOH is standardized by titrating 0.786 g of KHP. The titration requires 37.8 mL.
A 0.429 g sample of a pure monoprotic acid is titrated with the same base, requiring 31.7 mL. What is
the molecular mass of the monoprotic acid?  Ans: 133 g/mol.

1-22) Concentrated reagent grade ammonia is reported to be 14.8 F.  However, it can lose strength
rapidly if not tightly stoppered and should always be checked if needed for exact work. HCl is  standardized
against primary standard Na

2
CO

3
. 0.2500 g of the standard requires 40.00 mL of HCl. 10.00 mL of the

conc. NH
3
 are diluted to 1.000 L. 25.00 mL of the diluted ammonia require 26.39 mL of the HCl for

titration. What is the formality of the conc. reagent NH
3
?  Ans: 12.45 F.
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1-23) The acetic acid in a vinegar sample is determined as follows: NaOH is standardized by titrating a
0.8323 g sample of KHP. The standardization requires 43.34 mL. A 2.272 g sample of vinegar is
diluted to 50.00 mL and titrated with NaOH, requiring 39.87 mL. Calculate the percentage by weight of
acetic acid in the vinegar sample. Ans: 9.910%.

1-24) A solution of HCl is standardized by titration against 0.277 g of primary standard Na
2
CO

3
. The

titration requires 43.4 mL of HCl. A solid sample weighing 0.183 g and containing sodium oxide is
dissolved in water (Na

2
O + H

2
O → 2NaOH) and titrated with HCl, requiring 47.3 mL. What is the

percentage of Na
2
O in the sample?  Ans: 96.5%.

1-25) The percentage of CaCO
3
 in a 1.000 g sample was determined by adding 100.0 mL of 0.1000 F

HCl (an excess) to dissolve the sample.

CaCO
3
 + 2H+ → Ca2+ + H

2
O + CO

2
(g)

The solution was boiled to drive off all the CO
2
 and the remaining HCl was titrated with 0.1000 F

NaOH, requiring 25.00 mL. Calculate the percentage of CaCO
3
 in the sample.  Ans: 37.53%

1-26) The hydrochloric acid concentration in a solution is determined by titration with NaOH. 50.00
mL of sample require 27.31 mL of NaOH. The NaOH is standardized against oxalic acid (H

2
C

2
O

4
).

0.4000 g of the acid require 38.77 mL of NaOH (the acid is diprotic). What is the formality of the HCl
in the sample? If a 50 mL pipet can be used with a precision of ±0.03 mL, a balance with ±0.2 mg, and
a buret with ±0.02 mL, what is the expected absolute precision of the formality? Remember that each
mass is the result of two weighings and each volume from a buret is the result of two readings. Ans:
0.1252 F, ±0.0002 F (±0.000195 F).


